[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
Publication Ethics::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing & Abstracting
DOAJ
GOOGLE SCHOLAR
..
:: Volume 28, Issue 6 (12-2023) ::
__Armaghane Danesh__ 2023, 28(6): 775-794 Back to browse issues page
The Effect of Molecular Template Nanopolymer-zinc oxide(Zn) Nanoparticles Impregnated with Khuzestani Essential Oil on lasR Gene Expression in Clinical Isolates of Pseudomonas aeruginosa: a laboratory study
M Azizi1 , N Bahadur2 , A Sharifi3
1- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran , bahador@iaushiraz.ac.ir
3- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
Abstract:   (1147 Views)
Background & aim: In the present study, as a research background, the application of nanoparticles and herbal medicines in the treatment of diseases caused by Pseudomonas aeruginosa was investigated. The aim of this study was to determine the effect of zinc nanoparticles (Zn) impregnated with Khuzestan savory (Satureja khuzestanica) essential oil on the expression of lasR gene in clinical isolates of Pseudomonas aeruginosa, which are biofilm-forming bacteria, under extracellular conditions.
Methods: The present experimental study was conducted in 2019 on 150 non-repetitive and intermittent clinical samples suspected of Pseudomonas aeruginosa, which were collected from skin, blood, and urine samples of hospitalized patients in various wards of Imam Sajjad (AS) Hospital in Yasuj city. After the entry of 4 clinical strains along with a standard strain of Pseudomonas aeruginosa (ATCC 25922) as a sample, Khuzestan savory essential oil was prepared from Barij Essence Pharmaceutical Company (Kashan, Iran). Then, after identifying the Pseudomonas aeruginosa sample separated from the patients, PCR was performed to confirm the presence of lasR and DNA gyrase A genes, determine the antibiotic sensitivity pattern, broth microdilution test, checkerboard dilution, and agar test to determine the minimum inhibitory concentration, and real-time PCR to investigate the expression of lasR gene under laboratory conditions. The collected data were analyzed using Mann-Whitney U, T-Test, and Paired T-Test statistical tests.
Results: According to the results of the antibiotic sensitivity pattern, the highest resistance was related to amikacin (30 μg), colistin (10 μg), and ciprofloxacin (5 μg), and the lowest resistance was related to ceftazidime (30 μg) and imipenem (10 μg). Also, Khuzestan savory essential oil and zinc oxide nanoparticles had a minimum inhibitory concentration of 256-512 μg/mL against standard strains and clinical isolates. The relative minimum inhibitory concentration index (FIC) was equal to 1, which represents an increase in effect. Also, the minimum bactericidal concentration (MBC) was four times the minimum inhibitory concentration (MIC). The highest MIC was related to zinc oxide nanoparticles and the lowest was related to the simultaneous use of essential oil and nanoparticles. In the combined mode of treatments, half the MIC of separate treatments was required. Also, with the reduction of the effect m.
Conclusion: The results indicated that clinical strains were highly resistant to some antibiotics but sensitive to others. Also, Khuzestan savory essential oil and zinc oxide nanoparticles were effective against standard strains and clinical isolates. The main component of this essential oil was carvacrol, which has antimicrobial properties. The results showed that the combination of essential oil and nanoparticles led to a stronger and more effective reduction in lasR gene expression. The study concluded that the combination of Khuzestan savory essential oil and zinc oxide nanoparticles is a promising complementary and alternative therapeutic approach for the treatment of chronic Pseudomonas aeruginosa infections.
 
Keywords: Pseudomonas aeruginosa, Silver nanoparticles, Khuzestan thyme essential oil, LasR, Biofilm
Full-Text [PDF 944 kb]   (286 Downloads)    
Type of Study: Research | Subject: Microbiology
Received: 2023/07/23 | Accepted: 2023/12/10 | Published: 2023/12/10
References
1. Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infectious Diseases 2020; 20(1): 92.## [DOI:10.1186/s12879-020-4811-8] [PMID] []
2. Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications 2017; 10: 1-15. ## [DOI:10.2147/NSA.S133415] [PMID] []
3. Silva A, Silva V, Igrejas G, Poeta P. Carbapenems and Pseudomonas aeruginosa: mechanisms and epidemiology. Antibiotics and Antimicrobial Resistance Genes in the Environment: Elsevier; 2020; 253-68. ## [DOI:10.1016/B978-0-12-818882-8.00017-6]
4. Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Review of Respiratory Medicine 2016; 10(6): 685-97. ## [DOI:10.1080/17476348.2016.1177460] [PMID]
5. Alhussain FA, Yenugadhati N, Al Eidan FA, Al Johani S, Badri M. Risk factors, antimicrobial susceptibility pattern and patient outcomes of Pseudomonas aeruginosa infection: A matched case-control study. Journal of Infection and Public Health 2021; 14(1): 152-7. ## [DOI:10.1016/j.jiph.2020.11.010] [PMID]
6. Torres M, Gómez S, Galindo R, Vargas J. Multidrug-resistant Pseudomonas aeruginosa infection of central venous catheter in a patient with kdigo v chronic kidney disease receiving hemodialysis treatment: a case report and literature review. J Clin Case Rep 2018; 8(1153): 2. ##
7. Kumar R, Chhibber S, Gupta V, Harjai K. Screening & profiling of quorum sensing signal molecules in Pseudomonas aeruginosa isolates from catheterized urinary tract infection patients. The Indian Journal of Medical Research 2011; 134(2): 208. ##
8. Senturk S, Ulusoy S, Bosgelmez-Tinaz G, Yagci A. Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. The Journal of Infection in Developing Countries 2012; 6(06): 501-7. ## [DOI:10.3855/jidc.2543] [PMID]
9. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease 2013; 67(3): 159-73. ## [DOI:10.1111/2049-632X.12033] [PMID]
10. Tapia-Rodriguez MR, Hernandez-Mendoza A, Gonzalez-Aguilar GA, Martinez-Tellez MA, Martins CM, Ayala-Zavala JF. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control 2017; 75: 255-61. ## [DOI:10.1016/j.foodcont.2016.12.014]
11. Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 2014; 9(4): e93414. ## [DOI:10.1371/journal.pone.0093414] [PMID] []
12. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology 2004; 94(3): 223-53. ## [DOI:10.1016/j.ijfoodmicro.2004.03.022] [PMID]
13. Esmaeili D. The Study of Inhibition Effects Satureja khuzestaniea Essence against Gene Expression bap Acinetobacter baumannii with Real time PCR Technique. Iran J Med Microbiol 2015; 9(1); 313. ##
14. Agarwal H, Menon S, Kumar SV, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-biological Interactions 2018; 286: 60-70. [DOI:10.1016/j.cbi.2018.03.008] [PMID]
15. Fouda A, Saad E, Salem SS, Shaheen TI. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis 2018; 125: 252-61. ## [DOI:10.1016/j.micpath.2018.09.030] [PMID]
16. Jin SE, Jin HE. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials 2021; 11(2): 263. ## [DOI:10.3390/nano11020263] [PMID] []
17. Seil JT, Webster TJ. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnology 2012; 23(49): 495101. ## [DOI:10.1088/0957-4484/23/49/495101] [PMID]
18. Biavatti MW. Synergy: an old wisdom, a new paradigm for pharmacotherapy. Brazilian Journal of Pharmaceutical Sciences 2009; 45(3): 371-8. ## [DOI:10.1590/S1984-82502009000300002]
19. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. Journal of Clinical Microbiology 2021; 59(12): 10.1128. ## [DOI:10.1128/JCM.00213-21] [PMID] []
20. Gales AC, Reis AO, Jones RN. Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. Journal of Clinical Microbiology 2001; 39(1): 183-90. ## [DOI:10.1128/JCM.39.1.183-190.2001] [PMID] []
21. Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 2010; 12(5): 1531-51. ## [DOI:10.1007/s11051-010-9900-y]
22. Arends SR, Butler D, Scangarella-Oman N, Castanheira M, Mendes R. Intermethod comparability analyses of gepotidacin antimicrobial susceptibility tests using a large collection of globally collected Escherichia coli and Staphylococcus saprophyticus clinical isolates. Diagnostic Microbiology and Infectious Disease 2024: 116181. ## [DOI:10.1016/j.diagmicrobio.2024.116181] [PMID]
23. Mirzaei F, Salouti M, Shapouri R, Heidari Z. Antimicrobial effect of plant peptide MBP-1 and silver nanoparticles, along with their synergistic effect on skin infection due to Pseudomonas aeruginosa: in vitro and animal model. Pajoohandeh Journal 2013; 18(2): 64-8. ##
24. Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane sulfur regulates LasR-mediated quorum sensing and virulence in Pseudomonas aeruginosa PAO1. Antioxidants 2021; 10(9): 1498. ## [DOI:10.3390/antiox10091498] [PMID] []
25. Benkova M, Soukup O, Marek J. Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology 2020; 129(4): 806-22. ## [DOI:10.1111/jam.14704] [PMID]
26. Burton E, Yakandawala N, LoVetri K, Madhyastha M. A microplate spectrofluorometric assay for bacterial biofilms. Journal of Industrial Microbiology & Biotechnology 2007; 34(1): 1-4. ## [DOI:10.1007/s10295-006-0086-3] [PMID]
27. Colagiorgi A, Festa R, Di Ciccio PA, Gogliettino M, Balestrieri M, Palmieri G, et al. Rapid biofilm eradication of the antimicrobial peptide 1018-K6 against Staphylococcus aureus: A new potential tool to fight bacterial biofilms. Food Control 2020; 107: 106815. ## [DOI:10.1016/j.foodcont.2019.106815]
28. Mohammadzadeh Moghaddam M, Elhamirad A, Shariatifar N, Saidee Asl M, Armin M. Anti-bacterial effects of essential oil of Cardaria draba against bacterial food borne pathogens. The Horizon of Medical Sciences 2014; 19(5): 9-16. ##
29. Dadgar M, Bafroee T, Sadat A, Minaeian S. The effect of antibacterial synergism of silver nanoparticles with extract of Urtica dioica and Allium hirtifolum against multidrug resistant klebsiella (MDR) isolated from ICU patients. Medical Science Journal of Islamic Azad Univesity-Tehran Medical Branch 2019; 29(2): 131-40. ## [DOI:10.29252/iau.29.2.131]
30. Oroojalian F, Orafaee H, Azizi M. Synergistic antibaterial activity of medicinal plants essential oils with biogenic silver nanoparticles. Nanomedicine Journal 2017; 4(4): 237-44. ##
31. Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences 2021; 22(6): 3128. [DOI:10.3390/ijms22063128] [PMID] []
32. Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surgical Infections 2002; 3(S1): s79-s87. ## [DOI:10.1089/sur.2002.3.s1-79] [PMID]
33. Bahador A, Saghii H, Ataee R, Esmaeili D. The study of inhibition effects satureja khuzestaniea essence against gene expression bap acinetobacter baumannii with real time PCR technique. Iranian Journal of Medical Microbiology 2015; 9(1): 42-9. ##
34. Henriot CP, Martak D, Genet S, Bornette G, Hocquet D. Origin, fluxes, and reservoirs of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in aquatic ecosystems of a French floodplain. Science of The Total Environment 2022; 834: 155353. ## [DOI:10.1016/j.scitotenv.2022.155353] [PMID]
35. Rezzoagli C, Granato ET, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. Journal of Medical Microbiology 2020; 69(2): 147. ## [DOI:10.1099/jmm.0.001134] [PMID] []
36. Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina‐Rojas M, Tyner S, et al. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military‐relevant animal infection models. Apmis 2022; 130(7): 436-57. ## [DOI:10.1111/apm.13119] [PMID]
37. Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, et al. Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. Journal of Clinical Medicine 2020; 9(12): 3800. ## [DOI:10.3390/jcm9123800] [PMID] []
38. Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clinical Microbiology Reviews 2018; 31(4): e00019-18. [DOI:10.1128/CMR.00019-18] [PMID] []
39. Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa-Mechanisms, epidemiology and evolution. Drug Resistance Updates 2019; 44: 100640. ## [DOI:10.1016/j.drup.2019.07.002] [PMID]
40. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances 2019; 37(1): 177-92. ## [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
41. Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. International Journal of Oral Science 2014; 6(4): 189-94. ## [DOI:10.1038/ijos.2014.52] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizi M, Bahadur N, Sharifi A. The Effect of Molecular Template Nanopolymer-zinc oxide(Zn) Nanoparticles Impregnated with Khuzestani Essential Oil on lasR Gene Expression in Clinical Isolates of Pseudomonas aeruginosa: a laboratory study. armaghanj 2023; 28 (6) :775-794
URL: http://armaghanj.yums.ac.ir/article-1-3507-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 6 (12-2023) Back to browse issues page
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.03 seconds with 39 queries by YEKTAWEB 4710